
Open Source Licensing –
Experience and Insights

Andrew Katz
Moorcrofts LLP

What do I do?

Advise on licence interpretation and compatibility
Help projects choose licences
Carry out licence audits
Draft open source policies/procedures
Advise on violations
Advise foundations and projects on governance and

structure
Advise on licence migration
Try to avoid drafting licences

Introduction

In the beginning…

You paid for the hardware, not the software.

Photo courtesy IBM

In the beginning…

…computer users in academia, the military and
commerce shared code, with no thought that
it was somehow “protected”.

Then…this man got really
annoyed..

…that after walking to retrieve his printout from
a printer on a diferent foor, he found it was
jammed. And he wasn’t allowed access to the
code to fx it. That wasn’t sharing. It wasn’t
nice.

What’s source code?
• Source code

– //===
– // the list of all the possible states for the current FSM
– //===
– enum STATE{ START, INT, FLOAT, SCIENTIFIC, EXPONENT, S1, S2, INVALID } state;

– STATE Transition(char *str);
– void PrintState(STATE state);

– int main() {
– // declaring buffer variable
– char buffer[32] = {0};
– // getting input from the user
– cout << "\nPlease enter a number: ";
– cin.getline(buffer, 32);
– // compute final state
– STATE FINAL_STATE = Transition(buffer);
– // prints the final state
– PrintState(FINAL_STATE);
– return 0;
– }

• Object code
– 001010010111010101001010010001010101111

Software Freedom

- Richard Stallman (RMS)
- Free as in speech, not as in beer
- Freedom to use, study, share and adapt

Meanwhile…

This guy was working in his
bedroom, starting a project to
write an operating system
kernel to complement to the
rest of the work RMS was doing.

He called it “Linux”

The Linux Kernel

- Complements the GNU toolset, GCC etc
- GNU/Linux
- GPL2.0 – copyleft (from version 0.12)
- Classic “open source development model”
- But really uncharacteristic

Free Software vs Open Source

-Free Software Foundation vs Open Source Initiative
- Stallman vs. Perens/Raymond
- Authoritarian vs. liberal
- Moral stance vs. commercial
- GPL vs. BSD/Apache
- Pessimistic vs. optimistic

Cathedral vs. Bazaar

- Eric S. Raymond

- Cathedral = top down development

- Bazaar = self-organising system - emergence

- Non-hierarchical

- Hyper-meritocratic

- Release early, release often
- Many eyeballs make all bugs shallow

The Economic Model

How can anything free be any good?
Services, not licensing?
Do not open-source your key diferentiator
A method of performing collaborative R&D
Minimises lock-in
(Open source and open standards)
Modularity
More free-market oriented than proprietary s/w

Some Stats from Carlo Dafara
- 44% of all code created in the world is OSS and increasing
- 80% of newly deployed code is open source
- 31% of OSX is OSS, 75% of Android.
- Stats demonstrate OSS more innovative than proprietary
- Open source shows slower growth of maintenance efort
- 36% lower defects in OSS than comparable proprietary code
- 80% of software is non-diferentiating
- Revenue/employee in FLOSS frms: 221% of non-FLOSS
http://transfersummit.com/sites/default/fles/materials/rgardler/ts11dafara-notes.pdf

http://www.openforumacademy.org/library/ofa-fellows-reference-library/ofe-fellows-reference-library/Hosted%20Files/frst-conference-
proceedingsA4.pdf

http://transfersummit.com/sites/default/files/materials/rgardler/ts11daffara-notes.pdf

What is Free/Open Source?

• A philosophy
• A methodology
• A set of licences
• A business model
• None of the above/all of the above

Recap: software development
• Source code

– //===
– // the list of all the possible states for the current FSM
– //===
– enum STATE{ START, INT, FLOAT, SCIENTIFIC, EXPONENT, S1, S2, INVALID } state;

– STATE Transition(char *str);
– void PrintState(STATE state);

– int main() {
– // declaring buffer variable
– char buffer[32] = {0};
– // getting input from the user
– cout << "\nPlease enter a number: ";
– cin.getline(buffer, 32);
– // compute final state
– STATE FINAL_STATE = Transition(buffer);
– // prints the final state
– PrintState(FINAL_STATE);
– return 0;
– }

• Object code
– 001010010111010101001010010001010101111

Recap: software development

• Modern software rarely written from scratch
(80% of code writing is avoided - Dafara)

• Usually an assemblage of modules, with code
gluing them together

• Methods of combining code/modules
– Cutting and pasting
– Linking (static/dynamic)
– Plug-ins

Modern Software Development

• Code from many diferent sources is likely to
mean one codebase contains many diferent
copyright owners.

• Licensing structure can be complex
– Licence/sub-licence
– Parallel licences
– Co-ownership

What is a licence?
Permission to do something that would
otherwise be illegal.
That 'something' is usually copyright, but patent
and trademarks are also relevant
Permission can be subject to conditions.
Cannot grant a licence to do something that is
NOT illegal.
In common law countries, does not have to be a
contract (usually is, in other countries)

Proprietary licences typically...

• Limit use to specifed (number of) computers
• Restrict number of users
• Restrict types of use (e.g. home/student)
• Restrict jurisdiction
• Restrict assignment/transfer
• (Attempt to) restrict ability to reverse

engineer
• Require payment of fees

Free/Open Source Licences Grant
Freedoms

• Four Freedoms
– The freedom to run the program, for any purpose (freedom 0).
– The freedom to study how the program works, and change it to make

it do what you wish (freedom 1). Access to the source code is a
precondition for this.

– The freedom to redistribute copies so you can help your neighbor
(freedom 2).

– The freedom to distribute copies of your modifed versions to others
(freedom 3). By doing this you can give the whole community a chance
to beneft from your changes. Access to the source code is a
precondition for this.

http://www.gnu.org/philosophy/free-sw.html

Open Source Initiative

1. Free Redistribution
2. Source Code
3. Derived Works
4. Integrity of The Author's Source Code
5. No Discrimination Against Persons or Groups
6. No Discrimination Against Fields of Endeavor
7. Distribution of License
8. License Must Not Be Specific to a Product
9. License Must Not Restrict Other Software
10. License Must Be Technology-Neutral

http://www.opensource.org/docs/osd

Licence Proliferation (2011)

1. GNU General Public License (GPL) 2.0 45.64%
2. Artistic License (Perl) 8.50%
3. GNU Lesser General Public License (LGPL) 2.1 8.21%
4. MIT License 7.94%
5. GNU General Public License (GPL) 3.0 6.58%
6. BSD License 2.0 6.25%
7. Apache License 2.0 4.82%
8. Code Project Open 1.02 License 2.52%
9. Microsoft Public License (Ms-PL) 1.71%
10. Mozilla Public License (MPL) 1.1 1.14%

http://www.blackducksoftware.com/oss/licenses/

Licence Proliferation (2012)

1. GNU General Public License (GPL) 2.0 42.34%
2. Artistic License (Perl) 7.94%
3. GNU Lesser General Public License (LGPL) 2.1 7.08%
4. MIT License 11.49%
5. GNU General Public License (GPL) 3.0 6.41%
6. BSD License 2.0 6.81%
7. Apache License 2.0 5.48%
8. Code Project Open 1.02 License 2.11%
9. Microsoft Public License (Ms-PL) 1.88%
10. Mozilla Public License (MPL) 1.1 1.02%

http://www.blackducksoftware.com/oss/licenses/

Licence Proliferation (2013)

1. GNU General Public License (GPL) 2.0 32.65%
2. Apache License 2.0 12.84%
3. GNU General Public License (GPL) 3.0 11.62%
4. MIT License 11.28%
5. BSD License 2.0 6.83%
6. Artistic License (Perl) 6.27%
7. GNU Lesser General Public License (LGPL) 2.1 6.19%
8. GNU Lesser General Public License (LGPL) 3.0 2.62%
9. Eclipse Public License (EPL) 1.61%
10. Code Project Open 1.02 License 1.33%

http://www.blackducksoftware.com/oss/licenses/

Types of client

Startups
SMEs
Transitioning software companies
SaaS companies
Multinationals

Startups

Open source/open data friendly
Services model
Don't open source everything
Tend to be cloud based

SMEs

Difficult to categorise
Looking for second stage fnance/exit
Need scalable income or intellectual property
VCs sceptical of open source – looking for IPR

Transitioning Software Companies

Obsessed with licence revenue
Difficult to transition to an open model
Try to 'hack' the open source model by
- sharing source, not allowing modifcation
- open core
- dual licensing (using licences like AGPL)
- minimal compliance with GPL
- use 'open' as marketing, not philosophy
-time release software (Ghostscript)

Danger signs

Use words like 'viral', 'cancer' and 'infection' when
talking about GPL

Talk about 'freeware'
Put a lot of efort into engineering shims etc. to avoid

the GPL
Dual license using AGPL
Talk a lot about open source but put everything in the

cloud

SaaS Companies

Can be good or bad citizens
Are they abusing the spirit of open source?
[Open APIs – or not?]
Need to remember they are likely to be

distributing code on the client side (e.g.
javascript)

Multinationals

Patent focussed
Scared of GPL, or ignore it
Can be good corporate citizens

Clients' view on s/w patents
• Most SMEs:
– Ignore them and hope they go away

• Thinking SMEs
– Patents are too expensive to apply for
– Patents take too long to apply for/grant
– Copyright protection works for us

• Larger companies with an existing patent portfolio
– Embrace patent model
– Useful to counter incoming infringement suits
– Are a “fact of life”

• Rare exception – image processing developer
– The value is in my technique, not the code

Open Source Companies

• SMEs
– Oppose patents
–May join patent pools for their defensive

capability
• Larger Companies with existing patent portfolios
–More wary – want to retain value in existing

portfolio
–May out-license patents for open source projects

on various bases

The Licences
• “Ignore it and hope it goes away”
– MIT
– BSD

• Licences with explicit patent clauses
– Apache
– Open Software License (Academic Free License)
– Mozilla

• Liberty or death!
– GPL

Context
An open source license must grant enough patent rights

to allow the licensee to make, use, sell, offer for sale, or

import the open source work as distributed by its licensor.

Any additional license rights for derivative works

or other uses are at the option of the licensor.

Larry Rosen

The MIT License
Copyright (c) <year> <copyright holders>
Permission is hereby granted, free of charge, to any person obtaining a copy of this

software and associated documentation fles (the "Software"), to deal in the
Software without restriction, including without limitation the rights to use, copy,
modify, merge, publish, distribute, sublicense, and/or sell copies of the Software,
and to permit persons to whom the Software is furnished to do so, subject to the
following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Apache 2.0

An academic licence, but:
1. Longer
2.Patent license
3. Patent retaliation (covering patent license
only)

Mozilla 2.0

Weak copyleft, which
1. Allows the executable to be released under any licence...
2...but requires the source to be released under this

licence
3. Covers the fle only (not the project)
4. Relicensable in GPL2+, LGPL2.1+, AGPL (optional)
5. Patent licence, retaliation covers whole contributor

version

GPL 2.0

Strong copyleft
1. Requires all 'works based on the program' to be

released under GPL.
2. No explicit patent licence
3. 'Liberty or death'
4. Any third party receiving the binary must be able to

access the source
5. No additional restrictions

GPL3
Introduced in 2007 after a long consultation
- TiVoisation
- Licence compatibility
- Microsoft/Novell deal (and patents generally)
-Flexibility on additional terms
-Internationalisation (convey/propagate)
-Bit torrent
-Permission to circumvent TPMs
-Clarity on curing violations

GPL 3

• Extremely complex patent clause
• Grants rights for essential patent claims

controlled by a contributor, only covering the
contributor version.

• Addresses deals like Microsoft/Novell deal
• Liberty or Death!

Liberty or Death! GPL3
• Or: “no surrendering others' freedom”

If conditions are imposed on you (whether by court order,
agreement or otherwise) that contradict the conditions of
this License, they do not excuse you from the conditions of
this License. If you cannot convey a covered work so as to
satisfy simultaneously your obligations under this License
and any other pertinent obligations, then as a
consequence you may not convey it at all. For example, if
you agree to terms that obligate you to collect a royalty
for further conveying from those to whom you convey the
Program, the only way you could satisfy both those terms
and this License would be to refrain entirely from
conveying the Program.

Projects and Licence Compatibility
• Do you want/need to out license at all?
• If so, what out-licence do you want to use?
– Proprietary
– Copyleft

• Need to ensure that in-licences are compatible:
– Academic licences are generally not a problem
– Copyleft licences usually require outlicensing under the

same licence, except:
– E.g. GPL2/3 not compatible, but

• “or later” clause can help
• EUPL allows relicensing under GPL, CeCILL
• Mozilla 2.0 allows relicensing to GPL, AGPL, LGPL (unless excluded)

Compatibility and Linking - GPL

• If defnitely a derivative work, will be a
compatibility problem

• If on borderline (e.g. dynamic linking to a GPL
library), then may well annoy the community
– E.g. Wordpress themes

• Technical ways of circumventing:
– Separate download, shims
–May also annoy the community, even if legally

permissible

GPL Compatibility Chart (fsf.org)

The Questions
Open Source license vs. proprietary license
Permissive vs. copyleft licenses
Safe and 'dangerous' Open Source licenses
Obligations related to use of GPL
Restricting redistribution of Open Source solutions
Reasons for obtaining copyright of the code
Changing Open Source license
Use of mixed licenses
Governance of Open Source projects and its relationship with Open Source licensing
Potential license mismatch when using GPLv2 & LGPLv3
The MPLv2 vs. LGPL
Dealing with third party contributions
Mixing Open Source licenses
Indemnifcation of safety-critical software with a GPL v3 license -- what is the business model? Is it

possible?

Open Source vs Proprietary
Licences

What is really an open source license? I have
heard about the Open Source Initiative, but
how does it work in practice? Can I invent a
new license and call it an Open Source
license? What are the key diference between
diferent licenses?

When we now enter the cloud, why should
anyone care about software licenses?

Permissive vs. copyleft licenses...

What are the key diferences between permissive, weak copyleft, and strong copyleft Open Source
licenses? If I am an IT manager in a public sector organisation:

What are the main reasons for using (and not using) a permissive Open Source license?
What are the reasons for using (and not using) a weak copyleft Open Source license?
What are the reasons for using (and not using) a strong copyleft Open Source license?
Would the recommendations be diferent if I am a CEO of a small IT-company wishing to adopt Open

Source software components that are available and incorporate those in some software that we use
internally. Would the recommendation be diferent if we also use and distribute the software to
external organisations (customers)?

Would the recommendation be diferent if I am a manager in a large company wishing to use and
distribute software that we develop for our customers?

Safe and 'dangerous' Open Source licenses...

Are there any specifc Open Source licenses one should avoid when distributing
software that has been developed internally in our company?

Are there any specifc Open Source licenses one should consider using when
distributing software that has been developed internally in our company?

Some large companies to not want to engage with GPL-projects. Why? Are
these views based on misconceptions or are there something inherently
problematic from the perspective of a large company?

Obligations related to use of GPL...

When our organisation distribute a binary which
contains GPL licensed software, what must we
do in addition to providing our customer with
the binary? What should we do (in addition to
what we, from the licensing point of view,
have to do)?

Restricting redistribution of Open Source
solutions...

Suppose our organisation (we are an IT consultant company) have developed a software system for one of our customers. We
have now developed and distributed the software system to our customer and they have started to use the software. One
aspect of the agreement with our customer is that the software should be licensed under an Open Source license. Suppose
we license the software system under a copyleft license (e.g. GPLv2).

Under what circumstances can our customer prohibit us from distributing the software to another organisation? For example,
suppose the contract with our customer contains a clause which states that redistribution of the software system to other
organisations is not allowed. Would such a clause in a business contract be a violation of the underlying Open Source software
license agreement? Would there be a diference if the software system is licensed under a permissive license or a weak
copyleft license (e.g. LGPLv2)?

Similarly, if we consider the inverse situation (i.e. if I work as an IT manager in a public sector organisation and are a customer of
the IT consultant company), under what circumstances can our supplier prohibit us from redistributing the software to
another organisation (e.g. another public sector organisation have asked us if they can get a copy of the software we have)?
Would there be a diference in this situation, if the contract with our supplier contains a clause which states that
redistribution of the software system to other organisations are not allowed (i.e. our supplier insisted on keeping the
copyright and also that we should not be allowed to redistribute the solution). Would such a clause in a business contract be a
violation of the underlying Open Source software license agreement? Would there be a diference if the software system is
licensed under a permissive license or a weak copyleft license (e.g. LGPLv2)?

Reasons for obtaining copyright of the code...

Suppose I represent a public sector organisation, under
what circumstances would it make sense to a ask a
supplier to obtain the copyright of the code? Would it
make sense to have a shared copyright of the code?

Changing Open Source license...

Suppose I encounter an Open Source software
project and I really like the code. However, I
do not like the license under which it is
provided. What can (and should) I do in order
to be allowed to use the code? Under what
circumstances can the license be changed?

Use of mixed licences

We sometimes see the AGPL license used in combination with a
proprietary license (e.g. status.net), and sometimes GPL is used in
combination with a proprietary license (e.g. MySQL). What are the
reasons for using (and not using) a mixed strategy?

Why are some Open Source projects provided under several diferent
Open Source licenses? What are the main motivations for this?

The MPLv2 vs LGPL
he MPLv2 license has received some attention and been adopted by governmental agencies
(e.g. a Danish governmental initiative used this for a PDF-project). Some consider this license to be a viable alternative to the LGPL license. What are the

key diferences between MPLv2 and LGPLv2? What efects that we currently get from LGPLv2 would we loose if we were to change the license for our
software (to MPLv2) instead? As community members (and contributors) to GPL-licensed Open Source projects implementing the PDF-fle format
express some concern related to patents that Adobe have on the PDF fle format (as standardised by ISO) would you recommend using LGPLv3 instead
as a strategy for ensuring continued openness of the Open Source project (and as a strategy for ensuring that the licensing conditions for the PDF-
specifcation (which is current RF-conditions) will not change related to future versions of the PDF fle format (as standardised by ISO).

In general, if we were to start a new project today for implementation of a fle format and are considering MPLv2 and LGPLv3 as alternatives, which one
of these two alternatives would you recommend? What efects would we loose if we were to use LGPLv2 (instead of LGPLv3)?

Governance of Open Source projects and its
relationship with Open Source licensing...

Governance of open source projects under
foundations has been claimed to be an efective way
of creating a "legal shell" around such projects in
order to avoid lawsuits stemming from license or
patent infringements. Do you think this is a "bullet
proof" strategy as a protection against legal
problems or are there weaknesses or limitations
with this approach to governance?

Related to this, what is the role for foundations?

Potential licence mismatch when using GPLv2 &
LGPLv3...

Assume that one wants to publish a software package denoted by NEW and
that this software package is dependent on another package X which in
turn is dependent on Y which in turn is dependent on Z. Further assume
that the licenses for each of X, Y, Z are the following:

X is licensed under GPL 2 or later
Y is licensed under GPL 2 or later
Z is licensed under LGPL 3 or later

Since X and Y is dependent on Z, which is licensed under LGPL 3, is there a
license mismatch? If there is a license mismatch and since program NEW
is dependent on X, what should one do as an author of NEW? If there is a
license mismatch, should the authors of X and Y change the license to,
e.g., GPL 3 or later?

Mixing Open Source licenses in a distribution
package...

Is there a recommended way, or are there any restrictions how to deal with mixed licenses for
diferent fles in a distribution package? A concrete example: EJBCA and SignServer are both JEE
applications where the (java) code is under LGPL v2.1 (or later). All contributed Java code must be
under LGPL 2.1 or later, anything else would not work, right? We sometimes get helper/utility
scripts contributes, where the header says GPLv3 (or later). The scripts are not needed to run or
use the applications, but are nice additions and should be included in the distribution zip fle.
Is there any recommendations for such cases? Is there a license for the "whole work"?
- Can we claim the "distribution" is LGPLv2.1 (or later), with the helper script being GPLv3?
- Is there any such thing as a license for the distribution?
- Do we need to list all licenses for all helper scripts, or libraries we depend on, in the "distribution"
license README?

Dealing with third party contributions...
Dealing with copyright assignments...

Are there any recommended practices for third
party contributions?
- Sign of from contributors "this is my original
work, not copied from something else"?
- Copyright assignments? Why (and when)
should one use such? Why (and when) should
one not use such?
- License headers? (for whole fles this or easy,
but for some lines for an existing fle it is not)

Indemnifcation of safety-critical
software with a GPL v3 license

What is the business model?
Is it possible?

Further Resources

• IFOSSLR www.ifosslr.org
– Issue 1 – The Risk Grid
– Jacobsen –v- Katzer

• www.fsf.org
• www.rosenlaw.com
• www.groklaw.net
• www.w3c.org
• www.opensource.org

http://www.ifosslr.org/
http://www.fsf.org/
http://www.rosenlaw.com/
http://www.groklaw.net/
http://www.w3c.org/
http://www.opensource.org/

	PowerPoint Presentation
	Slide 2
	Introduction
	In the beginning…
	Then…this man got really annoyed..
	Slide 6
	Software Freedom
	Meanwhile…
	The Linux Kernel
	Free Software vs Open Source
	Cathedral vs. Bazaar
	The Economic Model
	Some Stats from Carlo Daffara
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Open Source Initiative
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Clients' view on s/w patents
	Open Source Companies
	The Licences
	Context
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	GPL 3
	Liberty or Death! GPL3
	Slide 43
	Compatibility and Linking - GPL
	GPL Compatibility Chart (fsf.org)
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Further Resources

