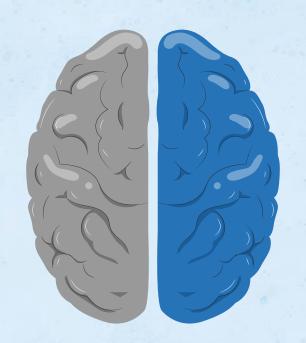


None of Your Business!

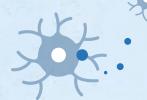

The Usefulness of Neurotechnology As a Tool to Reveal Your Innermost Secrets

Oskar MacGregor | University of Skövde 2023-12-07 | PICS Seminar

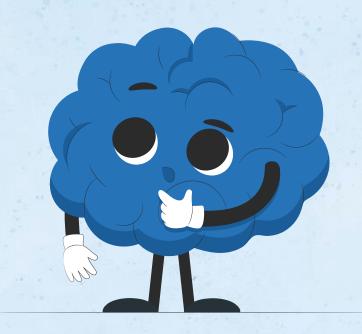
NEURO + PRIVACY = ?

The Neuro of Privacy

"What sorts of differences are there in brain states when we are in private vs. non-private situations?"



The Privacy of Neuro


"How can we keep people's neurodata secure?"


OR...

CAN NEUROTECHNOLOGY
BE USED TO SURREPTITIOUSLY GAIN ACCESS TO
YOUR INNERMOST
SECRETS?

OVERVIEW

01 PRIVACY

Different sorts of concerns

03 ...TECHNOLOGY

What can neurotechnologies actually conceivably do?

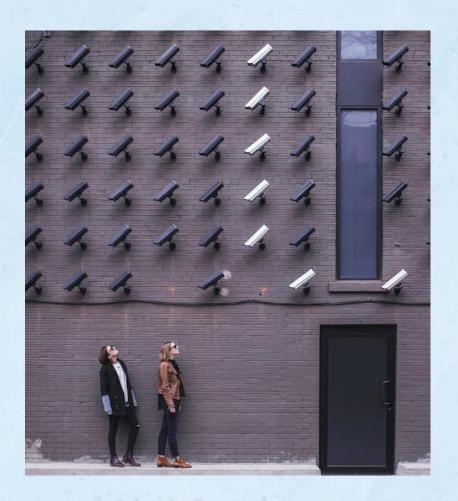
02 NEURO-...

Examples of neuroprivacy harms

04

CONCLUSIONS

A primer on *robust* neuroprivacy



01 PRIVACY

Different sorts of concerns

MANY CONCERNS

- Information collection (surveillance, interrogation)
- Information processing (aggregation, identification, insecurity, secondary use, exclusion)
- Information dissemination (breach of confidence, disclosure, exposure, increased accessibility, blackmail, appropriation, distortion)
- Invasion (intrusion, decisional interference)
- Basically: balance between power/needs of the individual vs. the collective.

Solove, DJ (2006) *U Penn Law Rev* 154.3: 477. doi.org/10.2307/40041279

02 NEURO-...

Examples of neuroprivacy harms

EXISTING NEUROPRIVACY CONCERNS

1

Attention

Chaudhary, U et al. (2016) *Nat Rev Neurol* 12.9: 513. doi.org/10.1038/ nrneurol.2016.113

4

Lie Detection

Abootalebi, V et al. (2009) *Comp Met* & *Prog in Biomed* 94.1: 48. <u>doi.org/</u> <u>10.1016/j.cmpb.2008.10.001</u>

2

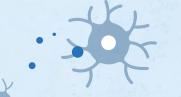
Fatigue

Tran, Y et al. (2020) *Psychophysiol* 57.5: e13554. doi.org/10.1111/ psyp.13554

5

Secrets

Lange, J et al. (2018) *Brain Informatics* 5.2: 1. <u>doi.org/10.1186/</u> s40708-018-0090-1 3


Emotion

Shu, L et al. (2018) *Sensors* 18.7: 2074. doi.org/10.3390/s18072074

6

Manipulation

Lews et al. (2016) *The Neuroscientist* 22.4: 406. doi.org/10.1177/ 1073858416646707

03 ...TECHNOLOGY

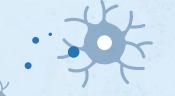
What can neurotechnologies actually conceivably do?

AVAILABLE NEUROTECHNOLOGIES

PET, SPECT, fMRI, fNIRS	Passively reads brain function (blood flow or other <i>slow</i> biological processes) in <i>still</i> subjects. Requires <i>extremely</i> complex equipment.
EEG/ERP, MEG, EROS	Passively reads brain function (tracks neural activity, fast) in still subjects. Only reads cortical surface. Very low tolerance to noise.
TMS/rTMS, tES (tDCS, tACS, tRNS), ECT	Actively stimulates function in <i>still</i> subjects. Limited to cortical <i>surface</i> . Can be painful/ induce seizures. Mixed findings for some (tES).
Single-unit recordings, ECoG, DBS, optogenetics	Invasive methods (require opening up the skull and often damaging cortical tissue). DBS and related tech have <i>multiple possible uses!</i>

NEUROHYPE!

The human brain is **sexy** (for marketers)!


A "scientific-looking" image of a brain scan makes reader judge a text as more trustworthy.

Even when the text has *nothing* to do with neuroscience!

Hence the flourishing of "neuro-" prefixes across sectors and niches...

McCabe, DP, Castel, AD (2008) *Cognition*, 107.1: 343. doi.org/10.1016/j.cognition .2007.07.017

04 CONCLUSIONS

A primer on *robust* neuroprivacy

IS IT A ROBUST CONCERN?

Attention

Only for high-grade equipment and specific variants of visual attention. (Or invasive technologies.)

Lie Detection

Confounding lie detection is as easy as it's always been. Don't be nervous, clench your jaw, wiggle your toes, etc.

Fatigue

Yes, this is a *potential* concern! (But the research still needs to find more robust correlates of fatigue!)

Secrets

Only for high-grade equipment and hyper-specific experimental setups! (Or invasive technologies.)

Emotion

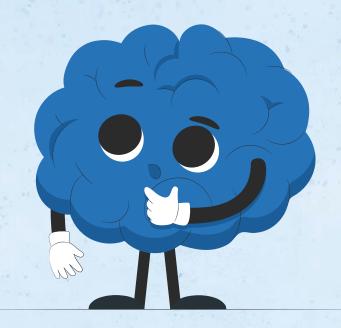
Detecting emotions from neurotech is hampered by methodological issues with classifying/measuring emotion!

Manipulation

For invasive technologies, possibly. For anything else: NOT A CHANCE!

The Battle for Your

DEFENDING THE RIGHT TO THINK FREELY IN THE AGE OF NEUROTECHNOLOGY


Nita A. Farahany


FINAL THOUGHTS

- Technology introduces a number of novel privacy concerns (or strengthens existing ones)
- Conceivably, neurotechnology makes many of these far more worrying...
- BUT: Almost all these worries are about potential future uses of neurotechnology
- AND: Even in a "perfect" neuromanipulation context, there is still too much we don't know about the brain!

CAN NEUROTECHNOLOGY
BE USED TO SURREPTITIOUSLY GAIN ACCESS TO
YOUR INNERMOST
SECRETS?

NOPE!



THANKS!

Any questions?

oskar.macgregor@his.se

