Yohannes Tadesse Aklilu

Teaching
Autumn 2019
- Practical Cryptology
- Matematik 3, behörighetsgivande kurs
- Matematik T
I also am course coordinator and examiner to the following courses this term:
- Förberedande kurs i matematik
- Matematiskt introduktionskurs till tekniker
- Matematik 3, behörighetsgivande kurs
- Matematik T
- Diskrete matematik
- Matematik för Ingenjörer II
- Praktisk Kryptologi
Spring 2019
- Förberedande kurs i matematik
- Matematik 3, behörighetsgivande kurs
- Applied functional analysis (University of Dar es Saalam)
Research
I am interested in studying algebraic, combinatorial and topological properties of monomial ideals in a polynomial ring. Syzygies, minimal free-resolutions, (graded) Betti numbers of monomial ideals, (hyper) graphs, Hilbert (Poincare) series are some of the topics of my interest.
I am also interested in differential operators over a commutative Noetherian local ring. In particular, I am interested in studying structure and properties of Lie-algebroids of derivations preserving ideals and modules over them.
Publications
Rolf Källström and Yohannes Tadesse, Hilbert series of modules over Lie algebroids, J. Algebra 432(2015), 129{184, DOI 10.1016/j.jalgebra. 2015.02.020. MR3334144
Yohannes Tadesse, Poincare’ series of monomial rings with minimal Taylor resolution, Matematiche(Catania) 67 (2012), no. 1, 119{128. MR2927824
Yohannes Tadesse, Derivations preserving a monomial ideal, Proc. Amer. Math. Soc. 137 (2009), no. 9, 2935{2942, DOI 10.1090/S0002-9939-09-09922-5. MR2506451
Yohannes Tadesse, Tangential Derivations, Hilbert Series and Modules over Lie Algebroids, Ph.D thesis, isbn:978-91-7447-372-8, urn: urn:nbn:se:su:diva-62642, 2011.
Yohannes Tadesse, The Module of Derivations Preserving a Monomial Ideal, Research Reports in Mathematics 10 (2007), Stockholm University.
Research
2015
Mathematica Scandinavica
2015. Article. https://doi.org/10.7146/math.scand.a-22864