Dario Melguizo Sanchis
Research
Ongoing projects
Digitalized AI tool for safe ATMPs
Advanced Therapy Medicinal Products (ATMPs) is a rapidly emerging field in medicine with great potential, where there is a growing need for robust and accurate methods to characterize and classify processes to assess safety aspects. This project gathers stakeholders from academia, research institutes and industry from various disciplines to develop AI-based methods for safety assessment of ATMPs.
November 2023 - October 2026 Systems BiologyFinished projects
Deep Learning for ATMP
In this project we develop and implement an innovative Deep-Learning (DL) based method for quality assessment for industrial use. By using human embryonic stem cells as a model system, we develop in different steps a neural network (NN) classifier for a stepwise prediction of the cell state (quality) of these cells using quantitative PCR (qPCR) data.
October 2022 - September 2024 Systems BiologyBIO-AID - Biomedical AI-driven data analytics
Artificial intelligence (AI) is an important driving force that is rapidly transforming health care and pharmaceutical industries in several ways. The vast amount of biomedical data available today poses unique opportunities to develop a repertoire of AI-based models. Although the results from studies using AI for solving biomedical problems are encouraging, there are numerous scientific challenges associated with AI for life science applications that need to be addressed.
October 2020 - September 2024 Systems BiologyData-mining for Biomarker Discovery, Selection, and Validation
In the BioMine project (Data-mining for Biomarker Discovery, Selection, and Validation), studies are performed on how large-scale biomolecular data can be mined to enable discovery and validation of multilevel biomarkers in Life Science.
October 2017 - May 2022 Systems BiologyBiomarkers for toxicity testing
This project is one of the three subprojects within the synergy project BioMine - Data-mining for biomarker discovery, selection, and validation. In this subproject we investigate how large-scale biomolecular data can be used to identify specific biomarkers for toxicity testing. The project is performed in close collaboration between the University of Skövde, AstraZeneca Gothenburg and Takara Bio Europe.
October 2017 - May 2022 Systems Biology