Search results

    Search results

    Show all results for ""
    Can not find any results or suggestions for "."

    Search tips

    • Make sure there are no spelling errors
    • Try different search terms or synonyms
    • Narrow your search for more hits

    How can we help?

    Contact Us

    Find Employees

    University of Skövde, link to startpage
    University of Skövde, link to startpage
    Close

    Search results

      Search results

      Show all results for ""
      Can not find any results or suggestions for "."

      Search tips

      • Make sure there are no spelling errors
      • Try different search terms or synonyms
      • Narrow your search for more hits

      How can we help?

      Contact Us

      Find Employees

      University of Skövde, link to startpage

      Skövde Artificial Intelligence Lab

      Skövde Artificial Intelligence Lab

      Our group, Skövde Artificial Intelligence Lab, also called SAIL, conducts research within applied AI in close collaboration with industry. Current research activities are focused on reasoning under uncertainty, deep learning, visual analytics, transparent decision support, data privacy and recommender systems. In terms of education, SAIL is responsible for the University’s Master’s programme in Data Science, the first of its kind in Sweden.

      Reasoning under Uncertainty

      SAIL has been conducting research on uncertainty representations, Bayesian theory, fuzzy sets and imprecise probability for a number of years. Within this context, the group has explored how different uncertainty representations affect the conclusions drawn from models/data and also the formal aspects of decision-making, including topics such as the combination and aggregation of information. We have contributed to the development of the theory of fuzzy (non-additive) measures and integrals, and we have used them in different applications. This line of research links with measure theory. The group maintains an R-package in which different uncertainty formalisms can be utilized.
      Researchers: Nikolas Alexander Huhnstock, Alexander Karlsson.

      Deep Learning

      Deep learning is a group of techniques which all aim to identify interesting, useful patterns in complex data, e.g., high-dimensional big data. Examples of techniques used within this area are restricted Boltzmann machines, deep belief nets, etc. Recently, SAIL has started to approach this research field by exploring how different methods within this area can handle different data types and uncertainty as well as how the results from the methods can be interpreted.
      Researchers: Nikolas Alexander Huhnstock, Göran Falkman, Alexander Karlsson, Yurong Li, Gunnar Mathiason, Maria Riveiro, Niclas Ståhl, Juhee Bae.

      Visual Analytics

      Visual analytics is the science of analytical reasoning facilitated by interactive visual interfaces. It aims to aid the process of sense-making when dealing with complex data (in terms of size, dimensions and relations), by visually revealing its underlying features as well as the logic behind data mining algorithms. We conduct research in the areas of interactive data analysis, information visualization, visual analytics and human computer interaction, developing novel approaches to the analysis and visualization of large, multidimensional data sets for decision support.
      Researchers: Juhee Bae, Göran Falkman, Tove Helldin, Maria Riveiro, Elio Ventocilla.

      Transparent Decision Support

      For a person, it is often difficult to understand the internal reasoning processes of an automated decision support system. However, it is often the person who needs to make the final decision based on the system’s recommendations. Therefore, the system should make available the information necessary for a person to understand why a decision is recommended, what alternatives exist, and how greatly these deviate from the most recommended decision. Transparent decision support is hence an integral part of our research. Recommended decisions are often based on probabilities; however, in a situation where uncertainties exist regarding events, it is not always straightforward to select the most suitable alternative. One option might be to include further context information, which can often be provided by a human expert. Hence, human-machine interaction will benefit from an approach to transparent decision support whereby human and machine work together as a team.
      Researchers: Göran Falkman, Tove Helldin, Alexander Karlsson, Gunnar Mathiason, Ulrika Ohlander, Joe Steinhauer.

      Data Privacy

      Data privacy (privacy-preserving data mining, statistical disclosure control and privacy-enhancing technologies) studies approaches to ensuring confidentiality when data has to be published or transferred to third parties for their analysis. We have developed methods for data protection, as well as measures for disclosure risk and information loss (data utility). We have used machine learning/data mining extensively within the context of data privacy. In particular, clustering and classification algorithms have been used to measure information loss, and distance (metric) learning methods have been developed and applied to measure disclosure risk. We fund and are editors of the journal Transactions on Data Privacy.
      Researchers: Navoda Senavirathne, Vicenç Torra.

      Recommender Systems

      At SAIL, research in recommender systems encompasses user modelling and personalisation. Recommender systems tailor the experience of information access and delivery systems to their users by identifying the correct information for the right user at the right time. The information need of each user is specified by the user’s context, the consumption device, and various other user-specific parameters. Recommender systems research at SAIL focuses on aspects related to replication, reproducibility and evaluation.
      Researchers: Rakesh Rana.

      Data Science

      SAIL is also responsible for Sweden's first Master program in Data Science.

      Past Projects

      On this page you can read about our past research projects.

      See also

      Former members

       

      Contact

      Associate Professor of Computer Science

      Published: 1/9/2020
      Edited: 1/9/2020
      Responsible: webmaster@his.se