Sökträffar

    Sökträffar

    Visa alla resultat för ""
    Hittar inga resultat eller sökförslag för "."

    Söktips

    • Kontrollera att orden är rättstavade
    • Försök med andra sökord eller synonymer
    • Smalna av din sökning för att få fler träffar

    Hur kan vi hjälpa dig?

    Ny student

    Kontakta oss

    Hitta medarbetare

    Högskolan i Skövde, länk till startsida

    Sökträffar

      Sökträffar

      Visa alla resultat för ""
      Hittar inga resultat eller sökförslag för "."

      Söktips

      • Kontrollera att orden är rättstavade
      • Försök med andra sökord eller synonymer
      • Smalna av din sökning för att få fler träffar

      Hur kan vi hjälpa dig?

      Ny student

      Kontakta oss

      Hitta medarbetare

      Högskolan i Skövde, länk till startsida

      Disputation: Towards Privacy Preserving Micro-Data Analysis

      Datum 10 december Tid 15:00 - 18:00 Plats Insikten, Portalen, Högskolan i Skövde

      Navoda Senavirathne försvarar sin avhandling "Towards Privacy Preserving Micro-Data Analysis: A Machine Learning Based Perspective under Prevailing Privacy Regulations".

      Titta på disputationen digitalt

      Disputationen sker i Insikten, Portalen, men livesänds också via Zoom. Klicka på länken nedan för att ta del av disputationen via Zoom.

      Titta på livestreamingen

      Sammanfattning

      Maskininlärning (ML) är förekommande inom olika domäner där känsliga mikrodata (i.e. data om enskilda personer) används för att bygga modeller. Nyligen har forskning visat att det går att återskapa den känsliga information som användes för att träna ML-modellen, genom att utnyttja modellens prediktioner, samt kunskap om och hur modellen byggts upp och optimerats. ML-modeller utgör därför ett hot mot sekretessen runt de individer vars data har byggt upp modellen. För att minimera riskerna så har speciella ML-modeller tagits fram och föreslagits av forskning, dessa metoder går under namnet PPML (från engelskans privacy preserving machine learning). De metoder som har föreslagits inom PPML bygger på differential privacy eller kryptografiska tekniker. Användandet av sådana tekniker medför dock mer komplicerade beräkningar, samt att de ofta medför en försämrad möjlighet till korrekta prediktioner för ML-modellerna. Dessutom så förutsätter metoderna att all rådata finns tillgänglig när ML-modellerna tränas.

      Kraven på hur mikro-data som publiceras ska skyddas är väldigt stränga, vilket gör att många väljer att anonymisera data redan innan den släpps för analys. Det är därför viktigt, både ur ett säkerhets- och användbarhets-perspektiv, att förstå hur ML-modeller påverkas av anonymiserad data. Detta görs dock sällan, utan dataskyddsåtgärder som anonymisering och PPML studeras oftast var för sig och kopplingen mellan dessa undersöks inte. Den här avhandlingen argumenterar för att det finns tydliga synergier av att använda dessa två fält ihop och om så görs uppstår mängder av fördelar för både de som kontrollerar datan och individerna som datan omfattar. Det här gör att kraven på hur ML-modeller kan användas, och vilka krav som ska ställas på integriteten hos datan, måste utvärderas på nytt om både PPML och anonymisering av data används.

      Den här avhandlingen bidrar, bland annat, med förståelse för vilka utmaningar och möjligheter som finns när anonymiserad data används inom ML. Avhandlingen belyser till exempel hur vissa delar av dataskyddsförordningen ”General Data Protection Regulation” (GDPR) kan stå i konflikt mot användandet av maskininlärning. Detta inspirerade till ett nytt förslag på en dataanonymiseringsalgoritm som baserades på probabilistisk k-anonymitet. Den föreslagna algoritmen gör det möjligt att bevara anonymiteten i datan på ett säkert sätt, samtidigt som det att få ut det mesta av potentialen inom ML.

      I nästa studie så introduceras en anonymetetsbevarande teknik för modellval inom ML och som baseras på integral privacy. Den föreslagna metoden klarar av återupprepade attacker genom att ta hänsyn till vad en möjlig inkräktare kan ha tagit reda på om träningsdatan och anpassa modellvalet utifrån detta. Modellvalet görs då utifrån ett perspektiv som ser till att öka osäkerheten kring inkräktarens uppskattningar av träningsdatan. I avhandlingen så beskrivs också egenskaper på välkända attacker som har varit riktade mot ML-modleler, som till exempel attacker som syftar på att ta reda på om en instans finns med i träningsdatan. Beskrivningen följs sedan av en utvärdering över hur vissa metoder kan bli manipulerade så att de skapar en övertro på skyddet och således underskattar riskerna. Den här utvärderingen ledde fram till nästa bidrag i avhandlingen där en ny attackmodell tas fram. Den nya attackmodellen kan till exempel användas för att bättre uppskatta riskerna med attacker för att avanonymisera träningsdata.

      För att sammanfatta så bidrar avhandlingen med en bredare kunskapsbas och förståelse över hur anonymitet kan bevaras även då ML-modeller används.

      Avhandlingen studerar även kopplingen mellan regulatoriska åtgärder som GDPR och analys av ”big data” och vilka följder dessa åtgärder får.

      Opponent

      Sonja Buchegger, professor, Kungliga Tekniska högskolan, KTH

      Handledare

      Vicenç Torra, professor, Umeå universitet
      Maria Riveiro, biträdande professor, Högskolan i Skövde

      Examinatorer

      Alina Campan, biträdande professor, Northern Kentucky University, USA
      Sébastien Gambs, professor, Université du Québec à Montréal, Kanada
      Simone Fischer-Hübner, professor, Karlstads universitet

      Kontakt

      Doktorand i informationsteknologi

      Navoda Senavirathne

      Institutionen för informationsteknologi

      Publicerad: 2021-11-09
      Senast ändrad: 2021-11-09
      Sidansvarig: webmaster@his.se