Sökträffar

    Sökträffar

    Visa alla resultat för ""
    Hittar inga resultat eller sökförslag för "."

    Söktips

    • Kontrollera att orden är rättstavade
    • Försök med andra sökord eller synonymer
    • Smalna av din sökning för att få fler träffar

    Hur kan vi hjälpa dig?

    Ny student

    Kontakta oss

    Hitta medarbetare

    Högskolan i Skövde, länk till startsida

    Sökträffar

      Sökträffar

      Visa alla resultat för ""
      Hittar inga resultat eller sökförslag för "."

      Söktips

      • Kontrollera att orden är rättstavade
      • Försök med andra sökord eller synonymer
      • Smalna av din sökning för att få fler träffar

      Hur kan vi hjälpa dig?

      Ny student

      Kontakta oss

      Hitta medarbetare

      Högskolan i Skövde, länk till startsida

      Disputation: Integrating Domain Knowledge into Deep Learning

      Datum 10 maj Tid 13:15 - 17:00 Plats Insikten, Portalen, samt via Zoom

      Niclas Ståhl försvarar sin avhandling "Integrating Domain Knowledge into Deep Learning - Increasing Model Performance Through Human Expertise".

      Disputationen sker i Insikten, Portalen, men livesänds också via Zoom. På grund av rådande omständigheter uppmanar vi dig att delta online.

      Klicka på länken nedan för att ta del av disputationen via Zoom.

      Titta på sändningen

      Sammanfattning

      I den här avhandlingen presenteras forskning om djupinlärning och hur modeller inom djupinlärning kan konstrueras och implementeras för att emulera expertkunskap och inkludera heuristik. Avhandlingen innehåller flera fallstudier där de framtagna modellernas prestanda och utvärderas mot modeller där expertkunskapen inte inkluderas. Dessa fallstuder utförs i samarbete med parter som bedriver forskning inom ståltillverkning och läkemedelsframtagning. Fallstudierna inom ståltillverkning fokuserar på valsning och smältning medan fokuset inom läkemedelsframtagningen ligger på generingen av nya läkemedelskandidater och förutsägelse av egenskaper hos molekyler.

      Fallstudierna i avhandlingen syftar huvudsakligen till att besvara tre forskningsfrågor. Den första är hur den interna representationen av data påverkar de olika modellena och om dessa blir bättre om datarepresentationerna liknar de mentala representationer av datan som domänexperer använder sig av. Den andra frågan adresserar hur beteende
      hos mänskliga experter kan inkorporeras i modellerna för att få dessa att resonera på liknande sätt. Den sista frågan undersöker hur det går att infoga villkor och begränsningar i modellerna, som förmedlats av mänskliga experter, för att kunna begränsa oinformerade generaliseringar i modellerna. Frågorna undersöks genom empiriska fallstudier där modellutvecklingen är starkt influerad av experternas kunskap om problemet. Ett sådant angreppssätt kräver att modellerna klarar av att appliceras på olika datarepresentationer och att de interna beräkningarna kan justeras så att de efterliknar det mänskliga resonemanget. Det är därför viktigt att modellerna som används är flexibla och kan organiseras på en mängd olika sätt.

      En av slutsatserna på avhandlingen är att en sorts modeller som uppfyller detta kravär artificiella neuronnät och avhandlingen finner att dessa kan prestera bättre än konventionella maskininlärningsmodeller. Avhandlingen resonerar om att detta beror på att artificiella neuronnät kan konstrueras på sätt som gör att de kan appliceras på komplexa datarepresentationer, vilket tillför mer information till modellen. Mer information ger i sin tur ett övertag mot andra modeller. Artificiella neuronnät har också fördelen att logiken inom dessa kan stuktureras så att de emulerar mänskliga experters angreppsätt. Logiken kan, till exempel, ändras så att modellen följer samma beräkningssteg som mänskliga experter eller att modellerna begränsas av samma villkor som de mänskliga experterna.

      Slutsatsen från den här avhandlingen är att modeller har ett övertag, i form av mer information, om de appliceras på data som fångar det studerade problemet väl, om modellerna följer samma resonemang som mänskliga experter eller om de känner till vilka begränsningar som finns runt problemet. Ett sådant övertag leder till bättre prestanda för modellerna.

      Handledare

      Göran Falkman, biträdande professor, Högskolan i Skövde
      Alexander Karlsson, lektor, Högskolan i Skövde
      Gunnar Mathiason, lektor, Högskolan i Skövde
      Jonas Boström, Astra Zeneca

      Opponent

      Keith L. Downing, professor, Norwegian University of Science and Technology

      Betygskommitté

      Panagiotis Papapetrou, professor, Stockholms universitet
      Rebecka Jörnsten, professor, Chalmers tekniska högskola
      Mats Granath, universitetslektor, Göteborgs universitet

      Kontakt

      Doktorand i informationsteknologi

      Niclas Ståhl

      Institutionen för informationsteknologi

      Publicerad: 2021-04-20
      Senast ändrad: 2021-04-20
      Sidansvarig: webmaster@his.se